- locally symmetric space
- локально симметричное пространство
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Symmetric space — In differential geometry, representation theory and harmonic analysis, a symmetric space is a smooth manifold whose group of symmetries contains an inversion symmetry about every point. There are two ways to make this precise. In Riemannian… … Wikipedia
Locally connected space — In this topological space, V is a neighbourhood of p and it contains a connected neighbourhood (the dark green disk) that contains p. In topology and other branches of mathematics, a topological space X is locally connected if every point admits… … Wikipedia
Hermitian symmetric space — In mathematics, a Hermitian symmetric space is a Kähler manifold M which, as a Riemannian manifold, is a Riemannian symmetric space. Equivalently, M is a Riemannian symmetric space with a parallel complex structure with respect to which the… … Wikipedia
Symmetric Turing machine — Definition of symmetric Turing machines: SL was first defined in 1982 by Lewis and Papadimitriou, [Jesper Jansson. [http://www.df.lth.se/ jj/Publications/STCON2.ps Deterministic Space Bounded Graph Connectivity Algorithms] . Manuscript. 1998.]… … Wikipedia
Aspherical space — In topology, an aspherical space is a topological space with all higher homotopy groups equal to {0}. If one works with CW complexes, one can reformulate this condition: an aspherical CW complex is a CW complex whose universal cover is… … Wikipedia
Space (mathematics) — This article is about mathematical structures called spaces. For space as a geometric concept, see Euclidean space. For all other uses, see space (disambiguation). A hierarchy of mathematical spaces: The inner product induces a norm. The norm… … Wikipedia
Complex projective space — The Riemann sphere, the one dimensional complex projective space, i.e. the complex projective line. In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a … Wikipedia
Nuclear space — In mathematics, a nuclear space is a topological vector space with many of the good properties of finite dimensional vector spaces. The topology on them can be defined by a family of seminorms whose unit balls decrease rapidly in size. Vector… … Wikipedia
Minkowski space — A diagram of Minkowski space, showing only two of the three spacelike dimensions. For spacetime graphics, see Minkowski diagram. In physics and mathematics, Minkowski space or Minkowski spacetime (named after the mathematician Hermann Minkowski)… … Wikipedia
Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… … Wikipedia
Compact operator on Hilbert space — In functional analysis, compact operators on Hilbert spaces are a direct extension of matrices: in the Hilbert spaces, they are precisely the closure of finite rank operators in the uniform operator topology. As such, results from matrix theory… … Wikipedia